For the tunisian map, the dabase used is extracted from ths INS, Tunisia website in order to maintain an information about the Tunisian Population per Governorate ( 24Governorate in total)[Find it attached in my Github]
poprg <- read_excel("files/pop per region-Tunisie.xlsx")
poprg
## # A tibble: 24 x 3
## Région `Valeur (En millier)` HASC
## <chr> <dbl> <chr>
## 1 Gouvernorat de Tunis 47.7 TN.TU
## 2 Gouvernorat de L'Ariana 43.6 TN.AN
## 3 Gouvernorat de Ben Arous 40.1 TN.BA
## 4 Gouvernorat de Manouba 38.1 TN.MN
## 5 Gouvernorat de Zaghouan 34.9 TN.ZA
## 6 Gouvernorat de Nabeul 34.8 TN.NB
## 7 Gouvernorat de Bizerte 33.4 TN.BZ
## 8 Gouvernorat de Bèja 29.8 TN.BJ
## 9 Gouvernorat de Jendouba 25.7 TN.JE
## 10 Gouvernorat de Kairouan 24.7 TN.KR
## # ... with 14 more rows
For the GDP, I extracted a database from Google Dataset Search with different worldwide Sources to build an interactive map for the whole world explained in “Projects” section
GDPperSource <- read_excel("files/data.xlsx")
GDPperSource
## # A tibble: 591 x 3
## Country GDP Source
## <chr> <dbl> <chr>
## 1 United States 19390600 InternationalMonetaryFund
## 2 China 12014610 InternationalMonetaryFund
## 3 Japan 4872135 InternationalMonetaryFund
## 4 Germany 3684816 InternationalMonetaryFund
## 5 United Kingdom 2624529 InternationalMonetaryFund
## 6 India 2611012 InternationalMonetaryFund
## 7 France 2583560 InternationalMonetaryFund
## 8 Brazil 2054969 InternationalMonetaryFund
## 9 Italy 1937894 InternationalMonetaryFund
## 10 Canada 1652412 InternationalMonetaryFund
## # ... with 581 more rows
For the average GDP, I created a new database to calculate GDP from each source to each country using SQL
avGDP <- read_excel("files/base.xlsx")
avGDP
## # A tibble: 226 x 2
## Country avGDP
## <chr> <chr>
## 1 Afghanistan 20942
## 2 Albania 13151
## 3 Algeria 187392
## 4 Andorra 3145.5
## 5 Angola 131698
## 6 Anguilla 311
## 7 Antigua and Barbuda 1438.33
## 8 Argentina 607057.67
## 9 Armenia 11154.33
## 10 Aruba 2664
## # ... with 216 more rows