Row

Data Description :

data<-read.table("files/wine.txt", sep=",")
data<-data[1:13]
colnames(data)<-c("Alcohol","Malicacid","Ash","Alcalinity of ash","Magnesium","Total phenols","Flavanoids","Nonflavanoid phenols ","Proanthocyanins ","Color intensity","Hue","OD280/OD315 of diluted wines ","Proline ")
# Pretraitement :
data$Alcohol[which(data$Alcohol=="1")]<-"alcohol 1"
data$Alcohol[which(data$Alcohol=="2")]<-"alcohol 2"
data$Alcohol[which(data$Alcohol=="3")]<-"alcohol 3"
# Descriptive statistics :
summary(data)
##    Alcohol            Malicacid          Ash        Alcalinity of ash
##  Length:178         Min.   :11.03   Min.   :0.740   Min.   :1.360    
##  Class :character   1st Qu.:12.36   1st Qu.:1.603   1st Qu.:2.210    
##  Mode  :character   Median :13.05   Median :1.865   Median :2.360    
##                     Mean   :13.00   Mean   :2.336   Mean   :2.367    
##                     3rd Qu.:13.68   3rd Qu.:3.083   3rd Qu.:2.558    
##                     Max.   :14.83   Max.   :5.800   Max.   :3.230    
##    Magnesium     Total phenols      Flavanoids    Nonflavanoid phenols 
##  Min.   :10.60   Min.   : 70.00   Min.   :0.980   Min.   :0.340        
##  1st Qu.:17.20   1st Qu.: 88.00   1st Qu.:1.742   1st Qu.:1.205        
##  Median :19.50   Median : 98.00   Median :2.355   Median :2.135        
##  Mean   :19.49   Mean   : 99.74   Mean   :2.295   Mean   :2.029        
##  3rd Qu.:21.50   3rd Qu.:107.00   3rd Qu.:2.800   3rd Qu.:2.875        
##  Max.   :30.00   Max.   :162.00   Max.   :3.880   Max.   :5.080        
##  Proanthocyanins  Color intensity      Hue        
##  Min.   :0.1300   Min.   :0.410   Min.   : 1.280  
##  1st Qu.:0.2700   1st Qu.:1.250   1st Qu.: 3.220  
##  Median :0.3400   Median :1.555   Median : 4.690  
##  Mean   :0.3619   Mean   :1.591   Mean   : 5.058  
##  3rd Qu.:0.4375   3rd Qu.:1.950   3rd Qu.: 6.200  
##  Max.   :0.6600   Max.   :3.580   Max.   :13.000  
##  OD280/OD315 of diluted wines     Proline     
##  Min.   :0.4800                Min.   :1.270  
##  1st Qu.:0.7825                1st Qu.:1.938  
##  Median :0.9650                Median :2.780  
##  Mean   :0.9574                Mean   :2.612  
##  3rd Qu.:1.1200                3rd Qu.:3.170  
##  Max.   :1.7100                Max.   :4.000
str(data)
## 'data.frame':    178 obs. of  13 variables:
##  $ Alcohol                      : chr  "alcohol 1" "alcohol 1" "alcohol 1" "alcohol 1" ...
##  $ Malicacid                    : num  14.2 13.2 13.2 14.4 13.2 ...
##  $ Ash                          : num  1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
##  $ Alcalinity of ash            : num  2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
##  $ Magnesium                    : num  15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
##  $ Total phenols                : int  127 100 101 113 118 112 96 121 97 98 ...
##  $ Flavanoids                   : num  2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
##  $ Nonflavanoid phenols         : num  3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
##  $ Proanthocyanins              : num  0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
##  $ Color intensity              : num  2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
##  $ Hue                          : num  5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
##  $ OD280/OD315 of diluted wines : num  1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
##  $ Proline                      : num  3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...

Row

Chart Boxplot

p <- ggplot(data, aes(factor(data$Alcohol), data$Magnesium))
p + geom_boxplot(fill=rainbow(3))+ theme(legend.position="none") 

Row

ACP

acp<-PCA(data[,2:13],ncp=11,scale.unit=TRUE,graph = FALSE)

####cercle de correlation
plot.PCA(acp,axes = c(1,2),choix = "var",title = "Cercle de correlations",col.hab = rainbow(12),col.quali = "cyan")

###Screeplot
fviz_screeplot(acp,choice="eigenvalue")

fviz_pca_biplot(acp)

###Repr?sentation des variables par cos2
fviz_cos2(acp, choice = "var",axes = c(1))

fviz_cos2(acp, choice = "var",axes = c(2))

fviz_cos2(acp, choice = "var",axes = c(3))

###Repr?sentation des variables par contribution
fviz_contrib(acp, choice = "var",axes = c(1))

fviz_contrib(acp, choice = "var",axes = c(2))

fviz_contrib(acp, choice = "var",axes = c(3))